人才培养

本科生教育 研究生教育 学术讲座 研究生招生

2024年5月24日学术报告

编辑:赵顺毅    时间:2024-05-23    点击数:    来源:赵忠盖    文、图:赵忠盖

报告人 Biao Huang 讲座题目 Data Analytics and Machine Learning for Feature Extraction.

学术报告


报告一:Data Analytics and Machine Learning for Feature Extraction.

报告人:Prof. Biao Huang, University of Alberta

报告时间:202452409:00

报告地点:天博 体育全站app官网入口B222

简介: Modern industries are awash with a large amount of data. The extraction of information and knowledge discovery from data for process design, control, and optimization, especially from day-by-day routine process operating data, is interesting but challenging. Big data analytics is an emerging area of great interest among data scientists and practicing engineers to extract meaningful features that represent data and their underlying processes. Unlike neural network learning-based approaches that typically extract features without clear physical meanings, most statistical feature extractors have physical interpretations. This presentation will give a historical overview of big data analytics along with illustrative examples related to some popular feature extraction methods.


报告二:Advancing Causal Analysis for Fault Detection and Root Cause Analysis in Process Systems Engineering

报告人:Prof. Biao Huang, University of Alberta

报告时间:202452414:00

报告地点:天博 体育全站app官网入口B222

简介:Causality analysis, a well-established data-driven technique for root cause identification, has garnered extensive attention across multiple disciplines. Utilizing causal analysis tools, engineers can construct causal maps crucial for fault prediction and diagnostic applications. However, relying solely on conventional data analytics for reconstructing causal maps raises challenges associated with data quality. High-quality data are imperative to ensure the reliability of results. In causality analysis, issues stemming from data quality manifest as spurious causations and the failure to identify the existence of causations. While causal maps can be constructed based on expert knowledge and process flow diagrams, this approach may prove inadequate for complex and tightly integrated processes. The emerging field of physics-informed modelling offers a promising avenue, having been successfully applied in various domains. However, combining physics information with observed data for reconstructing causal maps remains a relatively unexplored challenge. Motivated by these considerations, we introduce a novel framework to reconstruct causal maps for linear time-invariant dynamical systems. This innovative approach integrates observed data with physics information, enhancing the reliability of identifying the sources of process faults.


欢迎广大师生参与!


关闭

技术支持:信息化建设管理处

校内备案号:JW备170182

地址:天博 体育全站app官网入口 - 百度百科

邮编:214122

联系电话:0510-85910633

服务邮箱:iot@jiangnan.edu.cn

  • 江南大学微信订阅号

  • 天博 体育全站app官网入口订阅号

  • e江南订阅号

网站地图